Standardize metadata on-the-fly#

This use cases runs on a LaminDB instance with populated CellType and Pathway registries. Make sure you run the GO Ontology notebook before executing this use case.

Here, we demonstrate how to standardize the metadata on-the-fly during cell type annotation and pathway enrichment analysis using these two registries.

For more information, see:

!lamin load use-cases-registries
πŸ’‘ connected lamindb: testuser1/use-cases-registries
import lamindb as ln
import bionty as bt
from lamin_usecases import datasets as ds
import scanpy as sc
import matplotlib.pyplot as plt
import celltypist
import gseapy as gp
πŸ’‘ connected lamindb: testuser1/use-cases-registries
sc.settings.set_figure_params(dpi=50, facecolor="white")
ln.settings.transform.stem_uid = "hsPU1OENv0LS"
ln.settings.transform.version = "0"
ln.track()
πŸ’‘ notebook imports: bionty==0.42.9 celltypist==1.6.2 gseapy==1.1.2 lamin_usecases==0.0.1 lamindb==0.70.3 matplotlib==3.8.4 scanpy==1.10.1
πŸ’‘ saved: Transform(uid='hsPU1OENv0LS6K79', name='Standardize metadata on-the-fly', key='analysis-registries', version='0', type='notebook', updated_at=2024-04-22 10:40:49 UTC, created_by_id=1)
πŸ’‘ saved: Run(uid='nlduG8FLTjfZTsT9SEQV', transform_id=1, created_by_id=1)

An interferon-beta treated dataset#

A small peripheral blood mononuclear cell dataset that is split into control and stimulated groups. The stimulated group was treated with interferon beta.

Let’s load the dataset and perform some preprocessing:

adata = ds.anndata_seurat_ifnb(preprocess=False, populate_registries=True)
adata


AnnData object with n_obs Γ— n_vars = 13999 Γ— 9934
    obs: 'stim'
    var: 'symbol'
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pp.pca(adata, n_comps=20)
sc.pp.neighbors(adata, n_pcs=10)
sc.tl.umap(adata)

Analysis: cell type annotation using CellTypist#

model = celltypist.models.Model.load(model="Immune_All_Low.pkl")
Hide code cell output
πŸ”Ž No available models. Downloading...
πŸ“œ Retrieving model list from server https://celltypist.cog.sanger.ac.uk/models/models.json
πŸ“š Total models in list: 46
πŸ“‚ Storing models in /home/runner/.celltypist/data/models
πŸ’Ύ Downloading model [1/46]: Immune_All_Low.pkl
πŸ’Ύ Downloading model [2/46]: Immune_All_High.pkl
πŸ’Ύ Downloading model [3/46]: Adult_CynomolgusMacaque_Hippocampus.pkl
πŸ’Ύ Downloading model [4/46]: Adult_Human_PancreaticIslet.pkl
πŸ’Ύ Downloading model [5/46]: Adult_Human_Skin.pkl
πŸ’Ύ Downloading model [6/46]: Adult_Mouse_Gut.pkl
πŸ’Ύ Downloading model [7/46]: Adult_Mouse_OlfactoryBulb.pkl
πŸ’Ύ Downloading model [8/46]: Adult_Pig_Hippocampus.pkl
πŸ’Ύ Downloading model [9/46]: Adult_RhesusMacaque_Hippocampus.pkl
πŸ’Ύ Downloading model [10/46]: Autopsy_COVID19_Lung.pkl
πŸ’Ύ Downloading model [11/46]: COVID19_HumanChallenge_Blood.pkl
πŸ’Ύ Downloading model [12/46]: COVID19_Immune_Landscape.pkl
πŸ’Ύ Downloading model [13/46]: Cells_Adult_Breast.pkl
πŸ’Ύ Downloading model [14/46]: Cells_Fetal_Lung.pkl
πŸ’Ύ Downloading model [15/46]: Cells_Human_Tonsil.pkl
πŸ’Ύ Downloading model [16/46]: Cells_Intestinal_Tract.pkl
πŸ’Ύ Downloading model [17/46]: Cells_Lung_Airway.pkl
πŸ’Ύ Downloading model [18/46]: Developing_Human_Brain.pkl
πŸ’Ύ Downloading model [19/46]: Developing_Human_Gonads.pkl
πŸ’Ύ Downloading model [20/46]: Developing_Human_Hippocampus.pkl
πŸ’Ύ Downloading model [21/46]: Developing_Human_Organs.pkl
πŸ’Ύ Downloading model [22/46]: Developing_Human_Thymus.pkl
πŸ’Ύ Downloading model [23/46]: Developing_Mouse_Brain.pkl
πŸ’Ύ Downloading model [24/46]: Developing_Mouse_Hippocampus.pkl
πŸ’Ύ Downloading model [25/46]: Fetal_Human_AdrenalGlands.pkl
πŸ’Ύ Downloading model [26/46]: Fetal_Human_Pancreas.pkl
πŸ’Ύ Downloading model [27/46]: Fetal_Human_Pituitary.pkl
πŸ’Ύ Downloading model [28/46]: Fetal_Human_Retina.pkl
πŸ’Ύ Downloading model [29/46]: Fetal_Human_Skin.pkl
πŸ’Ύ Downloading model [30/46]: Healthy_Adult_Heart.pkl
πŸ’Ύ Downloading model [31/46]: Healthy_COVID19_PBMC.pkl
πŸ’Ύ Downloading model [32/46]: Healthy_Human_Liver.pkl
πŸ’Ύ Downloading model [33/46]: Healthy_Mouse_Liver.pkl
πŸ’Ύ Downloading model [34/46]: Human_AdultAged_Hippocampus.pkl
πŸ’Ύ Downloading model [35/46]: Human_Developmental_Retina.pkl
πŸ’Ύ Downloading model [36/46]: Human_Embryonic_YolkSac.pkl
πŸ’Ύ Downloading model [37/46]: Human_IPF_Lung.pkl
πŸ’Ύ Downloading model [38/46]: Human_Longitudinal_Hippocampus.pkl
πŸ’Ύ Downloading model [39/46]: Human_Lung_Atlas.pkl
πŸ’Ύ Downloading model [40/46]: Human_PF_Lung.pkl
πŸ’Ύ Downloading model [41/46]: Lethal_COVID19_Lung.pkl
πŸ’Ύ Downloading model [42/46]: Mouse_Dentate_Gyrus.pkl
πŸ’Ύ Downloading model [43/46]: Mouse_Isocortex_Hippocampus.pkl
πŸ’Ύ Downloading model [44/46]: Mouse_Postnatal_DentateGyrus.pkl
πŸ’Ύ Downloading model [45/46]: Nuclei_Lung_Airway.pkl
πŸ’Ύ Downloading model [46/46]: Pan_Fetal_Human.pkl
predictions = celltypist.annotate(
    adata, model="Immune_All_Low.pkl", majority_voting=True
)
adata.obs["cell_type_celltypist"] = predictions.predicted_labels.majority_voting
πŸ”¬ Input data has 13999 cells and 9934 genes
πŸ”— Matching reference genes in the model
🧬 3696 features used for prediction
βš–οΈ Scaling input data
πŸ–‹οΈ Predicting labels
βœ… Prediction done!
πŸ‘€ Detected a neighborhood graph in the input object, will run over-clustering on the basis of it
⛓️ Over-clustering input data with resolution set to 10
πŸ—³οΈ Majority voting the predictions
βœ… Majority voting done!
bt.CellType.inspect(adata.obs["cell_type_celltypist"]);
❗ received 14 unique terms, 13985 empty/duplicated terms are ignored
❗ 14 terms (100.00%) are not validated for name: Intermediate macrophages, B cells, Non-classical monocytes, Tcm/Naive helper T cells, Tem/Effector helper T cells, Tem/Trm cytotoxic T cells, Regulatory T cells, NK cells, Tcm/Naive cytotoxic T cells, CD16+ NK cells, pDC, DC2, Classical monocytes, DC
   detected 2 CellType terms in Bionty as synonyms: 'DC2', 'pDC'
β†’  add records from Bionty to your CellType registry via .from_values()
   couldn't validate 14 terms: 'Intermediate macrophages', 'Tem/Effector helper T cells', 'Regulatory T cells', 'B cells', 'NK cells', 'pDC', 'CD16+ NK cells', 'Classical monocytes', 'DC', 'DC2', 'Tcm/Naive helper T cells', 'Non-classical monocytes', 'Tcm/Naive cytotoxic T cells', 'Tem/Trm cytotoxic T cells'
β†’  if you are sure, create new records via ln.CellType() and save to your registry
adata.obs["cell_type_celltypist"] = bt.CellType.standardize(
    adata.obs["cell_type_celltypist"]
)
❗ found 2 synonyms in Bionty: ['pDC', 'DC2']
   please add corresponding CellType records via `.from_values(['plasmacytoid dendritic cell'])`
# Register cell type of found synonym
bt.CellType.from_public(name='plasmacytoid dendritic cell').save()
❗ now recursing through parents: this only happens once, but is much slower than bulk saving
sc.pl.umap(
    adata,
    color=["cell_type_celltypist", "stim"],
    frameon=False,
    legend_fontsize=10,
    wspace=0.4,
)
... storing 'cell_type_celltypist' as categorical
_images/dfc3038c747eb368d5600204d9c811833cf8190b6eaa7495abcc2745cde5d772.png

Analysis: Pathway enrichment analysis using Enrichr#

This analysis is based on the GSEApy scRNA-seq Example.

First, we compute differentially expressed genes using a Wilcoxon test between stimulated and control cells.

# compute differentially expressed genes
sc.tl.rank_genes_groups(
    adata,
    groupby="stim",
    use_raw=False,
    method="wilcoxon",
    groups=["STIM"],
    reference="CTRL",
)

rank_genes_groups_df = sc.get.rank_genes_groups_df(adata, "STIM")
rank_genes_groups_df.head()
names scores logfoldchanges pvals pvals_adj
0 ISG15 99.456551 7.132628 0.0 0.0
1 ISG20 96.736603 5.074124 0.0 0.0
2 IFI6 94.972954 5.828711 0.0 0.0
3 IFIT3 92.482368 7.432323 0.0 0.0
4 IFIT1 90.698982 8.053442 0.0 0.0

Next, we filter out up/down-regulated differentially expressed gene sets:

degs_up = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] > 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]
degs_dw = rank_genes_groups_df[
    (rank_genes_groups_df["logfoldchanges"] < 0)
    & (rank_genes_groups_df["pvals_adj"] < 0.05)
]

degs_up.shape, degs_dw.shape
((541, 5), (937, 5))

Run pathway enrichment analysis on DEGs and plot top 10 pathways:

enr_up = gp.enrichr(degs_up.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_up, figsize=(2, 3), title="Up", cmap=plt.cm.autumn_r);
_images/6c90635b458524c55b48a0826431d5fec9617620f7e4d4d2b40a3f7cac7a79c2.png
enr_dw = gp.enrichr(degs_dw.names, gene_sets="GO_Biological_Process_2023").res2d
gp.dotplot(enr_dw, figsize=(2, 3), title="Down", cmap=plt.cm.winter_r);
_images/e6ad4f33d51f38b46a6925021611af53dcf3ef21b8d8b6ddf4b2a77a69d875ac.png

Register analyzed dataset and annotate with metadata#

Register new features and labels (check out more details here):

new_features = ln.Feature.from_df(adata.obs)
ln.save(new_features)
new_labels = [ln.ULabel(name=i) for i in adata.obs["stim"].unique()]
ln.save(new_labels)
features = ln.Feature.lookup()

Register dataset using a Artifact object:

artifact = ln.Artifact.from_anndata(
    adata,
    description="seurat_ifnb_activated_Bcells",
)
artifact.save()
artifact.features.add_from_anndata(
    var_field=bt.Gene.symbol,
    organism="human", # optionally, globally set organism via bt.settings.organism = "human"
)

Querying metadata#

artifact.describe()
Artifact(uid='axfZD0Cc016T1A9k2YNF', suffix='.h5ad', accessor='AnnData', description='seurat_ifnb_activated_Bcells', size=215058116, hash='yBd9bn3le3yA9u1LIzt2Wd', hash_type='sha1-fl', visibility=1, key_is_virtual=True, updated_at=2024-04-22 10:43:45 UTC)

Provenance:
  πŸ“Ž storage: Storage(uid='Acl9soxr', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/use-cases-registries', type='local')
  πŸ“Ž transform: Transform(uid='hsPU1OENv0LS6K79', name='Standardize metadata on-the-fly', key='analysis-registries', version='0', type='notebook')
  πŸ“Ž run: Run(uid='nlduG8FLTjfZTsT9SEQV', started_at=2024-04-22 10:40:49 UTC, is_consecutive=True)
  πŸ“Ž created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1')
Features:
  var: FeatureSet(uid='ogzSNWTSHgLL4p1XMP83', n=11276, type='number', registry='bionty.Gene')
    'ZNF653', 'DPYSL4', 'FDX2', 'ADAM28', 'CD46', 'POLD3', 'ACTR3', 'MYD88', 'GNLY', 'KRT18', 'AQP11', 'ITPR2', 'FGFBP3', 'CALCA', 'CENPF', 'PAN2', 'RFK', 'CLTB', 'PGAM1', 'METRNL', ...
  obs: FeatureSet(uid='c93Ia8If3Wo4FuJP2CCg', n=2, registry='core.Feature')
    πŸ”— stim (2, core.ULabel): 'STIM', 'CTRL'
    πŸ”— cell_type_celltypist (1, bionty.CellType): 'plasmacytoid dendritic cell'
  STIM-up-DEGs: FeatureSet(uid='LAjcbqhLW5VymyOxRoDp', name='Up-regulated DEGs STIM vs CTRL', n=660, type='category', registry='bionty.Gene')
    'HSPA1B', 'SMCHD1', 'RNASEH2B', 'CCL8', 'ANXA4', 'PPM1K', 'IRF2', 'MYD88', 'ARL8B', 'HELB', 'PARP10', 'RABGAP1L', 'GLIPR2', 'ARID5A', 'TANK', 'SIGLEC1', 'LAMP2', 'OAS1', 'APOBEC3G', 'PRKD2', ...
  STIM-down-DEGs: FeatureSet(uid='vBwNHaHiPbmiQPetRMXl', name='Down-regulated DEGs STIM vs CTRL', n=1095, type='category', registry='bionty.Gene')
    'OSM', 'TRA2B', 'CD58', 'PSMD9', 'MDH1', 'ATP5F1A', 'FXYD5', 'SLC25A37', 'VASP', 'NDUFA8', 'M6PR', 'PRPF38A', 'MRPL28', 'UBE2J2', 'SERF2', 'ELOF1', 'ANAPC16', 'TBXAS1', 'CLTB', 'G6PD', ...
Labels:
  πŸ“Ž cell_types (1, bionty.CellType): 'plasmacytoid dendritic cell'
  πŸ“Ž ulabels (2, core.ULabel): 'STIM', 'CTRL'

Querying cell types#

Querying for cell types contains β€œB cell” in the name:

bt.CellType.filter(name__contains="B cell").df().head()
uid name ontology_id abbr synonyms description created_at updated_at public_source_id created_by_id
id

Querying for all artifacts annotated with a cell type:

celltypes = bt.CellType.lookup()
celltypes.plasmacytoid_dendritic_cell
CellType(uid='3JO0EdVd', name='plasmacytoid dendritic cell', ontology_id='CL:0000784', synonyms='type 2 DC|pDC|interferon-producing cell|IPC|T-associated plasma cell|plasmacytoid T cell|DC2|plasmacytoid monocyte|lymphoid dendritic cell', description='A Dendritic Cell Type Of Distinct Morphology, Localization, And Surface Marker Expression (Cd123-Positive) From Other Dendritic Cell Types And Associated With Early Stage Immune Responses, Particularly The Release Of Physiologically Abundant Amounts Of Type I Interferons In Response To Infection.', updated_at=2024-04-22 10:43:26 UTC, public_source_id=21, created_by_id=1)
ln.Artifact.filter(cell_types=celltypes.plasmacytoid_dendritic_cell).df()
uid storage_id key suffix accessor description version size hash hash_type n_objects n_observations transform_id run_id visibility key_is_virtual created_at updated_at created_by_id
id
1 axfZD0Cc016T1A9k2YNF 1 None .h5ad AnnData seurat_ifnb_activated_Bcells None 215058116 yBd9bn3le3yA9u1LIzt2Wd sha1-fl None None 1 1 1 True 2024-04-22 10:43:43.940524+00:00 2024-04-22 10:43:45.505020+00:00 1

Querying pathways#

Querying for pathways contains β€œinterferon-beta” in the name:

bt.Pathway.filter(name__contains="interferon-beta").df()
uid name ontology_id abbr synonyms description public_source_id created_at updated_at created_by_id
id
684 1l4z0v8W cellular response to interferon-beta GO:0035458 None cellular response to fibroblast interferon|cel... Any Process That Results In A Change In State ... 48 2024-04-22 10:40:10.909264+00:00 2024-04-22 10:40:10.909273+00:00 1
2130 1NzHDJDi negative regulation of interferon-beta production GO:0032688 None down regulation of interferon-beta production|... Any Process That Stops, Prevents, Or Reduces T... 48 2024-04-22 10:40:11.056876+00:00 2024-04-22 10:40:11.056884+00:00 1
3127 3x0xmK1y positive regulation of interferon-beta production GO:0032728 None positive regulation of IFN-beta production|up-... Any Process That Activates Or Increases The Fr... 48 2024-04-22 10:40:11.160971+00:00 2024-04-22 10:40:11.160980+00:00 1
4334 54R2a0el regulation of interferon-beta production GO:0032648 None regulation of IFN-beta production Any Process That Modulates The Frequency, Rate... 48 2024-04-22 10:40:11.285942+00:00 2024-04-22 10:40:11.285950+00:00 1
4953 3VZq4dMe response to interferon-beta GO:0035456 None response to fiblaferon|response to fibroblast ... Any Process That Results In A Change In State ... 48 2024-04-22 10:40:11.352135+00:00 2024-04-22 10:40:11.352145+00:00 1

Query pathways from a gene:

bt.Pathway.filter(genes__symbol="KIR2DL1").df()
uid name ontology_id abbr synonyms description public_source_id created_at updated_at created_by_id
id
1346 7S7qlEkG immune response-inhibiting cell surface recept... GO:0002767 None immune response-inhibiting cell surface recept... The Series Of Molecular Signals Initiated By A... 48 2024-04-22 10:40:10.976647+00:00 2024-04-22 10:40:10.976655+00:00 1

Query artifacts from a pathway:

ln.Artifact.filter(feature_sets__pathways__name__icontains="interferon-beta").first()
Artifact(uid='axfZD0Cc016T1A9k2YNF', suffix='.h5ad', accessor='AnnData', description='seurat_ifnb_activated_Bcells', size=215058116, hash='yBd9bn3le3yA9u1LIzt2Wd', hash_type='sha1-fl', visibility=1, key_is_virtual=True, updated_at=2024-04-22 10:43:45 UTC, storage_id=1, transform_id=1, run_id=1, created_by_id=1)

Query featuresets from a pathway to learn from which geneset this pathway was computed:

pathway = bt.Pathway.filter(ontology_id="GO:0035456").one()
pathway
Pathway(uid='3VZq4dMe', name='response to interferon-beta', ontology_id='GO:0035456', synonyms='response to fiblaferon|response to fibroblast interferon|response to interferon beta', description='Any Process That Results In A Change In State Or Activity Of A Cell Or An Organism (In Terms Of Movement, Secretion, Enzyme Production, Gene Expression, Etc.) As A Result Of An Interferon-Beta Stimulus. Interferon-Beta Is A Type I Interferon.', updated_at=2024-04-22 10:40:11 UTC, public_source_id=48, created_by_id=1)
degs = ln.FeatureSet.filter(pathways__ontology_id=pathway.ontology_id).one()

Now we can get the list of genes that are differentially expressed and belong to this pathway:

contributing_genes = pathway.genes.all() & degs.genes.all()
contributing_genes.list("symbol")
['IFI16',
 'OAS1',
 'MNDA',
 'XAF1',
 'BST2',
 'SHFL',
 'IFITM1',
 'AIM2',
 'PLSCR1',
 'STAT1',
 'CALM1',
 'PNPT1',
 'IFITM2',
 'IRF1',
 'IFITM3']
# clean up test instance
!lamin delete --force use-cases-registries
!rm -r ./use-cases-registries
Hide code cell output
πŸ’‘ deleting instance testuser1/use-cases-registries
❗ manually delete your stored data: /home/runner/work/lamin-usecases/lamin-usecases/docs/use-cases-registries